rmse ----------------------------------------- :funcelse:`improvelib.metrics.`:funcname:`rmse`:funcelse:`(y_true, y_pred)` Compute Root Mean Squared Error (RMSE). Uses sklearn.metrics.root_mean_square_error() for sklearn v1.4.0 and higher, sklearn.metrics.mean_square_error(squared=False) for sklearn v0.22.0 up to v1.4.0 and the square root of sklearn.metrics.mean_square_error() for lower versions. Used in :doc:`api_metrics_compute_metrics` and can be used directly. .. container:: utilhead: Parameters: **y_true** : np.ndarray Ground truth. **y_pred** : np.ndarray Predictions made by the model. .. container:: utilhead: Returns: **rmse** : float The computed RMSE. .. container:: utilhead: Example This function is called by :doc:`api_metrics_compute_metrics` which is called by :doc:`api_utils_compute_performance_scores`, which also saves the scores. You can use this function directly, for example during model training like so: .. code-block:: import improvelib.metrics as metr rmse_to_monitor = metr.rmse(y_true, y_pred)