Train API ================================= IMPROVE general training parameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ *log_level* | **Type:** str | **Default:** "DEBUG" | **Help:** Set log levels. Default is WARNING. Levels are: DEBUG, INFO, WARNING, ERROR, CRITICAL, NOTSET. *input_dir* | **Type:** str | **Default:** "./" | **Help:** Base directory for input data. All additional input pathes will be relative to the base input directory. *output_dir* | **Type:** str | **Default:** "./" | **Help:** Base directory for output data. All additional relative output pathes will be placed into the base output directory. *config_file* | **Type:** str | **Default:** None | **Help:** Config file in INI format. *param_log_file* | **Type:** str | **Default:** "param_log_file.txt" | **Help:** Log of final parameters used for run. Saved in output_dir if file name, can be an absolute path. *data_format* | **Type:** str | **Default:** ".parquet" | **Help:** File format to save the ML data file (e.g., '.pt', '.tfrecords'). *input_supp_data_dir* | **Type:** str | **Default:** None | **Help:** Dir containing supplementary data in addition to benchmark data (usually model-specific data). *model_file_name* | **Type:** str | **Default:** "model" | **Help:** Filename to store trained model (str is w/o file_format). *model_file_format* | **Type:** str | **Default:** ".pt" | **Help:** File format to save the trained model. *epochs* | **Type:** int | **Default:** 7 | **Help:** Training epochs. *learning_rate* | **Type:** float | **Default:** 7 | **Help:** Learning rate for the optimizer. *batch_size* | **Type:** int | **Default:** 7 | **Help:** Training batch size. *val_batch* | **Type:** int | **Default:** 64 | **Help:** Validation batch size. *loss* | **Type:** str | **Default:** "mse" | **Help:** Prediction performance metric to monitor for early stopping during model training (e.g., 'mse', 'rmse'). *patience* | **Type:** int | **Default:** 20 | **Help:** Iterations to wait for a validation metric to get worse before stop training. *metric_type* | **Type:** str | **Default:** "regression" | **Help:** Metrics appropriate for given task. Options are 'regression' or 'classification'. Drug Response Prediction training parameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ *y_col_name* | **Type:** str | **Default:** "auc" | **Help:** Column name in the y data file (e.g., response.tsv), that represents the target variable that the model predicts.