get_y_data ----------------------------------------- :funcelse:`improvelib.applications.drug_response_prediction.drp_utils.`:funcname:`get_y_data`:funcelse:`(split_file, benchmark_dir, y_data_file, split_id='split_id', sep='\t')` Gets y data for a given split file. Used in *preprocess*. .. container:: utilhead: Parameters: **split_file** : str, Path, List of str, List of Path Name of split file if in benchmark data, otherwise path to split file. Can be a list of str or Path. **benchmark_dir** : str, Path Path to benchmark data directory. **y_data_file** : str Name of y data file. **split_id** : str, optional Name of column containing the split ID (default: 'split_id'). **sep** : str, optional Separator for y data file (default: '\t'). .. container:: utilhead: Returns: **df** : pd.DataFrame Y data dataframe for given split. .. container:: utilhead: Example To load y data for the training set: .. code-block:: response_train = drp.get_y_data(split_file=params["train_split_file"], benchmark_dir=params['input_dir'], y_data_file=params['y_data_file']) Loading y data to preprocess data for all three stages is typically by looping through the stages as follows: .. code-block:: stages = {"train": params["train_split_file"], "val": params["val_split_file"], "test": params["test_split_file"]} for stage, split_file in stages.items(): Within this loop, y data for each stage can be loaded with: .. code-block:: response_stage = drp.get_y_data(split_file=split_file, benchmark_dir=params['input_dir'], y_data_file=params['y_data_file'])