Preprocess API

IMPROVE general preprocess parameters

log_level
Type: str
Default: “DEBUG”
Help: Set log levels. Default is WARNING. Levels are: DEBUG, INFO, WARNING, ERROR, CRITICAL, NOTSET.
input_dir
Type: str
Default: “./”
Help: Base directory for input data. All additional input pathes will be relative to the base input directory.
output_dir
Type: str
Default: “./”
Help: Base directory for output data. All additional relative output pathes will be placed into the base output directory.
config_file
Type: str
Default: None
Help: Config file in INI format.
param_log_file
Type: str
Default: “param_log_file.txt”
Help: Log of final parameters used for run. Saved in output_dir if file name, can be an absolute path.
data_format
Type: str
Default: “.parquet”
Help: File format to save the ML data file (e.g., ‘.pt’, ‘.tfrecords’).
input_supp_data_dir
Type: str
Default: None
Help: Dir containing supplementary data in addition to benchmark data (usually model-specific data).
x_data_dir
Type: str
Default: “x_data”
Help: Dir name that contains the files with features data (x data).
y_data_dir
Type: str
Default: “y_data”
Help: Dir name that contains the files with target data (y data).
splits_dir
Type: str
Default: “splits”
Help: Dir name that contains files that store split ids of the y data file.
train_split_file
Type: str
Default: “fake”
Help: The path to the file that contains the train split ids (e.g., ‘split_0_train_id’, ‘split_0_train_size_1024’).
val_split_file
Type: str
Default: “fake”
Help: The path to the file that contains the val split ids (e.g., ‘split_0_val_id’).
test_split_file
Type: str
Default: “fake”
Help: The path to the file that contains the test split ids (e.g., ‘split_0_test_id’).

Drug Response Prediction preprocess parameters

y_data_files
Type: str
Default: “fake”
Help: List of files that contain the y (prediction variable) data. Example: [[‘response.tsv’]].
x_data_canc_files
Type: str
Default: “fake”
Help: List of feature files including gene_system_identifer. Example: [[‘cancer_gene_expression.tsv’, [‘Gene_Symbol’]]].
x_data_drug_files
Type: str
Default: “fake”
Help: List of feature files. Example: [[‘drug_SMILES.tsv’]].
canc_col_name
Type: str
Default: “improve_sample_id”
Help: Column name in the y (response) data file that contains the cancer sample ids.
drug_col_name
Type: str
Default: “improve_chem_id”
Help: Column name in the y (response) data file that contains the drug ids.
y_col_name
Type: str
Default: “auc”
Help: Column name in the y data file (e.g., response.tsv), that represents the target variable that the model predicts.

Synergy preprocess parameters

y_data_file
Type: str
Default: “synergy.tsv”
Help: File that contains the y (prediction variable) data.
cell_transcriptomic_file
Type: str
Default: None
Help: “‘cell_transcriptomics.tsv’ for benchmark data or path to the transcriptomics data. None if not used.”
cell_transcriptomic_transform
Type: str
Default: None
Help: “List of lists with the type of transformation and the option. Transformations will be performed in the order of the

outer list. For example, [[‘normalize’, ‘zscale’], [‘subset’, ‘L1000’]] will first normalize the data with z-scaling and then subset to genes in L1000. For subset, a path to a text file with Entrez IDs separated by new lines can be given. None if not used.”

cell_cnv_file
Type: str
Default: None
Help: “‘cell_cnv_continuous.tsv’ or ‘cell_cnv_discretized.tsv’ for benchmark data or path to the CNV data. None if not used.”
cell_cnv_transform
Type: str
Default: None
Help: “List of lists with the type of transformation and the option. Transformations will be performed in the order of the

outer list. For example, [[‘normalize’, ‘zscale’], [‘subset’, ‘L1000’]] will first normalize the data with z-scaling and then subset to genes in L1000. For subset, a path to a text file with Entrez IDs separated by new lines can be given. None if not used.”

cell_mutation_file
Type: str
Default: None
Help: “‘cell_mutation_delet.tsv’ or ‘cell_mutation_nonsynon.tsv’ for benchmark data or path to the mutation data. None if not used.”
cell_mutation_transform
Type: str
Default: None
Help: “List of lists with the type of transformation and the option. Transformations will be performed in the order of the

outer list. For example, [[‘normalize’, ‘zscale’], [‘subset’, ‘L1000’]] will first normalize the data with z-scaling and then subset to genes in L1000. For subset, a path to a text file with Entrez IDs separated by new lines can be given. None if not used.”

drug_smiles_file
Type: str
Default: None
Help: “‘drug_smiles.tsv’ or ‘drug_smiles_canonical.tsv’ for benchmark data or path to the SMILES data. None if not used.”
drug_mordred_file
Type: str
Default: None
Help: “‘drug_mordred.tsv’ for benchmark data or path to the Mordred data. None if not used.”
drug_infomax_file
Type: str
Default: None
Help: “‘drug_infomax.tsv’ for benchmark data or path to the Infomax data. None if not used.”
drug_ecfp_file
Type: str
Default: None
Help: “‘drug_ecfp[2/4/6]_nbits[256/1024].tsv’ for benchmark data or path to the ECFP data. None if not used.”
cell_column_name
Type: str
Default: “DepMapID”
Help: “Column name in the y (response) data file that contains the cancer sample IDs.”
drug_column_name
Type: str
Default: “DrugID”
Help: “Column name in the y (response) data file that contains the cancer sample IDs.”
drug_1_column_name
Type: str
Default: “DrugID_row”
Help: “Column name in the y (response) data file that contains the first drug IDs.”
drug_2_column_name
Type: str
Default: “DrugID_col”
Help: “Column name in the y (response) data file that contains the second drug IDs.”
y_col_name
Type: str
Default: “loewe”
Help: “Column name in the y data file (e.g., synergy.tsv), that represents the target variable that the model predicts.

In synergy prediction problem it can be one of [‘loewe’, ‘bliss’, ‘zip’, ‘hsa’, ‘smean’, ‘css’].”